Trigonometry Pure Math 2&3
Advanced Trigonometry Review
1. Basic Trigonometric Functions
Primary Functions:
- sine (sin θ)
- cosine (cos θ)
- tangent (tan θ)
- cosecant (cosec θ = 1/sin θ)
- secant (sec θ = 1/cos θ)
- cotangent (cot θ = 1/tan θ)
2. Important Trigonometric Identities
Pythagorean Identities:
- sin²θ + cos²θ = 1
- 1 + tan²θ = sec²θ
- 1 + cot²θ = cosec²θ
Double Angle Formulas:
- sin 2θ = 2sinθ cosθ
- cos 2θ = cos²θ - sin²θ = 2cos²θ - 1 = 1 - 2sin²θ
- tan 2θ = 2tanθ/(1 - tan²θ)
3. Advanced Trigonometric Concepts
R-Method (R cos/sin(θ ± α)):
For expressions of the form asinθ + bcosθ:
- R = √(a² + b²)
- α = arctan(b/a)
- Result: R cos(θ - α) or R sin(θ + α)
4. Solving Trigonometric Equations
General Methods:
- Express all terms using the same trigonometric function
- Make substitutions to simplify complex expressions
- Use factorization when possible
- Remember to find all solutions in the given interval
Example: Solving 2tan²x + secx = 1
- Replace secx with 1/cosx
- Convert tan²x to (sin²x)/(cos²x)
- Find common denominator
- Solve for x in the specified interval
5. Special Angle Formulas
Values to Remember:
- sin 30° = 1/2
- cos 30° = √3/2
- sin 45° = 1/√2
- cos 45° = 1/√2
- sin 60° = √3/2
- cos 60° = 1/2
6. Compound Angle Formulas
- sin(A ± B) = sinA cosB ± cosA sinB
- cos(A ± B) = cosA cosB ∓ sinA sinB
- tan(A ± B) = (tanA ± tanB)/(1 ∓ tanA tanB)
7. Triple Angle Formulas
sin 3θ = 3sinθ - 4sin³θ
cos 3θ = 4cos³θ - 3cosθ
Trigonometry Practice Problems
Enhance Your Understanding of Trigonometry with These Practice Problems
A. Basic Trigonometric Functions
Problem 1 Easy
Solve the equation: 2sec(2x - 90°) = 3 for x ∈ [0°, 180°]
Solution:
Step 1: Isolate secant
sec(2x - 90°) = 3/2
Step 2: Take arccos of both sides
2x - 90° = ±arccos(2/3)
Step 3: Solve for x
2x = ±arccos(2/3) + 90°
x = (±arccos(2/3) + 90°)/2
Using calculator: x ≈ 48.19° or 131.81°
Answer: x = 48.19° or 131.81°
Problem 2 Medium
Express the equation cosec θ = 3sin θ + cot θ in terms of sin θ only, and solve for θ ∈ [0°, 180°]
Solution:
Step 1: Convert all terms to sin θ
• cosec θ = 1/sin θ
• cot θ = cos θ/sin θ = √(1-sin²θ)/sin θ
Step 2: Substitute
1/sin θ = 3sin θ + √(1-sin²θ)/sin θ
Step 3: Multiply all terms by sin θ
1 = 3sin²θ + √(1-sin²θ)
Step 4: Solve by substituting sin θ = x
1 = 3x² + √(1-x²)
x = ±0.5 (only positive value in first quadrant)
θ = 30° or 150°
Answer: θ = 30° or 150°
Problem 3 Hard
Prove that: sin(60° + x) + cos(30° + x) ≡ √3 cos x
Solution:
Step 1: Use compound angle formulas
sin(60° + x) = sin60°cosx + cos60°sinx
cos(30° + x) = cos30°cosx - sin30°sinx
Step 2: Substitute special angle values
sin60° = √3/2, cos60° = 1/2
sin30° = 1/2, cos30° = √3/2
Step 3: Expand
(√3/2)cosx + (1/2)sinx + (√3/2)cosx - (1/2)sinx
Step 4: Combine like terms
= √3cosx
Therefore, sin(60° + x) + cos(30° + x) ≡ √3 cos x
B. R-method and Advanced Problems
Problem 4 Medium
Express 3cos θ + 4sin θ in the form Rcos(θ - α), where R > 0 and α ∈ [0°, 90°]
Solution:
Step 1: Using R-method formula
R = √(3² + 4²) = √25 = 5
Step 2: Find α
tan α = 4/3
α = arctan(4/3) ≈ 53.13°
Step 3: Verify by expanding
5cos(θ - 53.13°) = 5(cosθcos53.13° + sinθsin53.13°)
= 3cosθ + 4sinθ
Answer: 5cos(θ - 53.13°)
Problem 5 Hard
Solve the equation: 2cot²x + cosecx = 1 for x ∈ [0°, 360°]
Solution:
Step 1: Let y = sinx
cosecx = 1/y
cot²x = cos²x/sin²x = (1-y²)/y²
Step 2: Substitute
2((1-y²)/y²) + 1/y = 1
Step 3: Multiply all terms by y²
2(1-y²) + y = y²
2 - 2y² + y = y²
2 = 3y² - y
3y² - y - 2 = 0
Step 4: Solve quadratic
y = (1 ± √(1 + 24))/6 = (1 ± 5)/6
y = 1 or -2/3
Step 5: Find x
x = arcsin(1) = 90°, 270°
x = arcsin(-2/3) ≈ 138.19°, 401.81°
Answer: x = 90°, 138.19°, 270°