Transformation IGCSE
Quiz 1:
Fullscreen Mode
Fullscreen Mode
Geometric Transformations Theory
1. Reflections
Definition: Mirror image over a line
Key Formulas:
- Vertical line x=a: (x,y) → (2a-x,y) - Horizontal line y=b: (x,y) → (x,2b-y) - Line y=x: (x,y) → (y,x) - Line y=-x: (x,y) → (-y,-x)

2. Rotations
Definition: Turning around a center point
Rotation Matrices:
90° clockwise:
\(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\)
\(\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\)
180° rotation:
\(\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}\)
\(\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}\)
3. Translations
Definition: Sliding without rotation
Vector Notation:
Translation vector \( \binom{a}{b} \): (x,y) → (x+a, y+b)

4. Enlargements
Scale Factor Formula:
For center (h,k) and scale factor s: x' = h + s(x - h) y' = k + s(y - k)

Combined Transformations
Multiple transformations can be represented as:
Composite Transformation Matrix: T = T₁ × T₂ × ... × Tₙ
Key Concepts:
- Congruence in reflection/rotation/translation
- Similarity in enlargements
- Invariant points/lines
- Matrix representation of transformations