Posts

Showing posts with the label Kelas 12

Further Calculus PM2

Image
📚 Further Calculus - Complete Guide Pure Mathematics 3| Cambridge AS & A Level 8.1 Derivative of tan⁻¹(x) Understanding tan⁻¹(x): The inverse tangent function (arctan) reverses the tangent operation. If tan(θ) = x, then θ = tan⁻¹(x) Derivation Let y = tan⁻¹(x) Then: tan(y) = x Differentiate both sides: sec²(y) × dy/dx = 1 Therefore: dy/dx = 1/sec²(y) Using identity: sec²(y) = 1 + tan²(y) = 1 + x² Result: dy/dx = 1/(1 + x²) KEY FORMULA: d/dx[tan⁻¹(x)] = 1/(1 + x²) With chain rule: d/dx[tan⁻¹(f(x))] = f'(x)/(1 + [f(x)]²) Example 1: Differentiate tan⁻¹(3x) Solution: Let f(x) = 3x, so f'(x) = 3 d/dx[tan⁻¹(3x)] = 3/(1 + 9x²) Example 2: Differentiate tan⁻¹(√x) Solution: f(x) = x^(1/2), f'(x) = 1/(2√x) d/dx[tan⁻¹(√x)] = [1/(2√x)] / [1 + x] = 1/[2√x(1 + x)] 8.2 Integration of 1/(x² + a²) The Reverse Process: Since d/dx[tan⁻¹(x)] = 1/(1 + x²), we can integrate backwards! KEY FORMULAS: ∫ 1...

Vectors PM2

Image
📐 VECTORS: Complete Study Guide Cambridge AS & A Level Mathematics - Pure Mathematics 3 1. INTRODUCTION TO VECTORS What is a Vector? A vector is a quantity that has two essential properties: 📏 Magnitude (Size/Length) 🧭 Direction Scalars vs Vectors Scalars (Number only) Vectors (Number + Direction) Temperature (25°C) Velocity (60 km/h North) Mass (5 kg) Force (10 N Downward) Distance (10m) Displacement (10m East) 2. DISPLACEMENT VECTORS (Section 9.1) 2.1 Writing Vectors Method 1: Column Vector ⎛ x ⎞ v = ⎜ y ⎟ ⎝ z ⎠ Where x is movement along the x-axis, y al...

SAMPLING - Theory & Formulas

Image
Other note source 📊 SAMPLING - Theory & Formulas Cambridge AS & A Level Mathematics 📖 Part 1: Introduction to Sampling Key Definitions Population: Complete set of ALL items of interest Sample: Part of the population (size = n) Representative Sample: Accurately reflects population characteristics Biased Sample: Does NOT properly represent population Random Sample: ALL possible samples of size n have equal probability of selection 💡 Why Use Samples? Reason Example 💰 Cost-Effective Test 50 products vs 10,000 ⏰ Time-Saving Survey 100 people vs millions 🔨 Destructive Testing Crash testing helmets 🌍 Impossible to Survey All All fish in the ocean 🎲 Random Sampling Methods Using Random Number Tables: Number population: 000 to 499 (for 500 items) Pick starting point in table Read digits matching your numbering Ignore numbers outside range Ignore repeats Using Excel: =RAN...

NUMERICAL SOLUTIONS OF EQUATIONS

Image
Other note source NUMERICAL SOLUTIONS OF EQUATIONS Concise Theory & Formula Guide Cambridge AS & A Level Mathematics 1. INTRODUCTION Numerical methods find approximate solutions to equations that cannot be solved algebraically. Examples include x³ + x - 4 = 0 , eˣ = 2x + 1 , and sin(x) = x - 1 . Historical Fact: Quintic equations (degree 5 and higher) generally have no algebraic solutions, making numerical methods essential. 2. LOCATING ROOTS (Section 6.1) Root Definition α is a root of f(x) = 0 if f(α) = 0 Method 1: Graphical Approach Rearrange equation as g(x) = h(x) , sketch both graphs, and find intersection points. Each intersection represents a root. Method 2: Change of Sign Method Change of Sign Principle: If f(x) is continuous and f(a) · f(b) If f(a) 0 → Root exists between a and b Example: Change of Sign Problem: Show f(x) = x⁵ + x - 1 = 0 has a root between 0 ...

INTEGRATION PM2

Image
Other note source 📐 INTEGRATION - Theory & Formulas Cambridge AS & A Level Mathematics - Pure Mathematics 2 1. Introduction to Integration Integration is the reverse process of differentiation . Symbol: ∫ f(x) dx means "integrate f(x) with respect to x" ⚠️ Always add + c for indefinite integrals (constant of integration) Example: • Differentiate x² → get 2x • Integrate 2x → get x² + c 2. Integration of Exponential Functions Basic Rules ∫ e x dx = e x + c ∫ e (ax+b) dx = (1/a) e (ax+b) + c Example 1: ∫ e (3x) dx a = 3, so answer = (1/3)e (3x) + c Example 2: ∫ 6e (3x) dx = 6 × (1/3)e (3x) + c = 2e (3x) + c Example 3: Evaluate ∫₀² e (3x) dx Step 1: Integrate: [(1/3)e (3x) ]₀² Step 2: Upper limit: (1/3)e⁶ Step 3: Lower limit: (1/3)e⁰ = 1/3 Answer: (1/3)(e⁶ - 1) 3. Integration of 1/(ax+b) Basic Rules ∫ (1/x) dx = ln|x| + c ∫ 1/(ax+b) dx = (1/a) ln|ax+b| + c ⚠️ Always use |x| (absolute value) b...

Further Differentiation PM2

Image
Differentiation - Cambridge AS & A Level Mathematics 📐 DIFFERENTIATION Cambridge AS & A Level Mathematics - Pure Mathematics 2 📚 Apa yang Akan Anda Pelajari: Mendiferensiasikan produk dan hasil bagi Menggunakan turunan dari e x , ln(x), sin(x), cos(x), tan(x) Mencari turunan dari fungsi implisit dan parametrik Menerapkan diferensiasi untuk menyelesaikan masalah nyata 4.1 ATURAN PRODUK (PRODUCT RULE) Apa itu Aturan Produk? Ketika kita perlu mendiferensiasikan fungsi yang dikalikan bersama , kita menggunakan Aturan Produk. Contoh: y = (x + 1)⁴ × (3x - 2)³ 📌 RUMUS ATURAN PRODUK Jika y = u × v, maka: dy/dx = u(dv/dx) + v(du/dx) 💡 Dalam Kata-kata: Fungsi pertama × turunan kedua + Fungsi kedua × turunan pertama y = u × v | _________|_________ | | | | u(dv/dx) v(du/dx) | | |_______TAMBAH______| ...

Continuous random variables

Image
Other Source Ringkasan Teori & Rumus Variabel Acak Kontinu 1. Definisi Variabel Acak Kontinu Variabel acak kontinu X dapat memiliki nilai apa pun dalam interval kontinu . Contoh: tinggi badan, waktu tunggu, suhu, laju peluruhan radioaktif. 2. Fungsi Kepadatan Peluang (PDF) Syarat PDF f(x) : 1. f(x) ≥ 0 untuk semua x 2. ∫ -∞ ∞ f(x) dx = 1 (total luas = 1) Grafik PDF f(x) x 3. Menghitung Peluang Karena P(X = a) = 0 , peluang hanya bisa dihitung untuk interval: P(a ≤ X ≤ b) = ∫ a b f(x) dx Untuk grafik sederhana bisa juga dengan geometri (luas segiempat, trapesium, segitiga). 4. Nilai Tengah (Median) Median m adalah nilai yang memenuhi: ∫ -∞ m f(x) dx = 0.5 Intuisi: letak vertikal yang membelah luas kurva menjadi dua bagian sama besar. 5. Persentil Umum Persentil- p (0 < p < 1) adalah q sedemikian hingga: ∫ -∞ q f(x) dx = p 6. Nilai Harapan (Mean) E(X) = μ = ∫ -∞ ∞ x f(x) dx 7. Varia...

Logarithmic And Exponential Functions

Image
Logarithmic & Exponential Functions All-in-One Theory Sheet 2.1 Logarithms to Base 10 Definition: If 10 x = y , then log 10 y = x (written log y for short). ┌-----┐ │ 10 │ │ ^ │ ← Exponent │ y │ └-----┘ log 1000 = 3 because 10³ = 1000 log 0.01 = –2 because 10 –2 = 0.01 2.2 Logarithms to Any Base a Definition: If a x = y with a > 0 and a ≠ 1 , then log a y = x . log₂ 32 = 5 because 2⁵ = 32 log₅ 1 = 0 because 5⁰ = 1 2.3 The Three Laws of Logarithms ┌-------┐ │ Laws │ └-------┘ Product: log a (xy) = log a x + log a y Quotient: log a (x / y) = log a x – log a y Power: log a (x n ) = n log a x 2.4 Solving Logarithmic Equations Golden Rule: Logs only exist for positive numbers. Use the laws to get a single log on each side. Drop the log...

Further Algebra

Image
Quiz 1:   Fullscreen Mode Aljabar Lanjutan: Pecahan Parsial dan Ekspansi Binomial 🎓 Aljabar Lanjutan: Pecahan Parsial dan Ekspansi Binomial 📚 Pengantar: Mengapa Kita Mempelajari Aljabar Lanjutan? Pernahkah kamu melihat pecahan seperti ini? (2x + 13)/[(2x + 1)(x - 3)] Atau mungkin ekspresi seperti ini? (1 + x)^(-3) Nah, di bab ini kita akan belajar cara menangani ekspresi-ekspresi yang tampak rumit ini! Kita akan belajar dua hal utama: 1. Pecahan Parsial - cara memecah pecahan rumit menjadi pecahan-pecahan yang lebih sederhana 2. Ekspansi Binomial - cara mengembangkan (1 + x)^n ketika n bukan bilangan bulat positif 🔢 7.1 Pecahan Aljabar Tidak Wajar (Improper Algebraic Fractions) Apa itu Pecahan Tidak Wajar? Inga...