Posts

Showing posts with the label Kelas 8

Chemistry 8A

Image
Quiz 1:   Fullscreen Mode Chemistry: Bonding, Reaction Rates, and Equilibrium Complete Chemistry Theory: Bonding, Reaction Rates, and Equilibrium Section 1: Ionic and Covalent Bonding Atomic Structure Atoms consist of three fundamental particles: Protons : Positively charged particles in the nucleus Neutrons : Neutral particles in the nucleus Electrons : Negatively charged particles orbiting the nucleus Nucleus Electron Orbits Ion Formation Cation Formation: Atom → Cation + e⁻ Anion Formation: Atom + e⁻ → Anion Na⁺ Cation + Cl⁻ Anion ...

Light

Image
Quiz 1:   Fullscreen Mode Chapter 12: Light Physics - Complete Guide Chapter 12: Light Physics - Complete Theory and Formulas Introduction to Light Light is a form of electromagnetic wave that allows us to see objects around us. Objects can be classified as: Luminous objects: Produce their own light (e.g., lamp, fire) Non-luminous objects: Reflect light from other sources (e.g., wall, picture) 12.1 Reflection of Light The Law of Reflection Two fundamental principles: The angle of incidence (i) equals the angle of reflection (r) The incident ray, reflected ray, and normal all lie in the same plane Law of Reflection Formula: i = r ...

Acids, Bases, and Salts

Image
Quiz 1:   Fullscreen Mode Acids, Bases, and Salts Chapter 12: Acids, Bases, and Salts Welcome, budding chemists! Today, we\'re going to explore the world of acids, bases, and salts. These chemical compounds are everywhere, playing crucial roles in nature and in our daily lives. Have you ever heard of Lake Natron in northern Tanzania? It\'s an incredible place, but its water is so corrosive that it can burn your skin! Why is it so harsh? Because it\'s highly alkaline, meaning it contains strong bases. This high alkalinity is due to the presence of salts like sodium carbonate and sodium hydrogen carbonate. Despite its harsh conditions, Lake Natron is a vital breeding ground for the lesser flamingos. The alkalinity even helps keep most predators away. This real-world example shows us just how powerful and important these substances can be! Let\'s start by breaking down each of these important categories. 1. Acids: The Sour and Corrosive Many ...

Getaran dan gelombang SMP

Image
Quiz 1:   Fullscreen Mode Getaran dan Gelombang Getaran dan Gelombang A. Getaran Getaran adalah gerak bolak-balik suatu benda melalui titik keseimbangannya. Getaran memiliki beberapa karakteristik penting: 1. Periode (T) Periode adalah waktu yang diperlukan untuk melakukan satu getaran lengkap. Satuannya adalah detik (s). T = t / n di mana: T = periode (s) t = waktu total (s) n = jumlah getaran 2. Frekuensi (f) Frekuensi adalah jumlah getaran yang terjadi dalam satu detik. Satuannya adalah Hertz (Hz). f = 1 / T atau f = n / t di mana: f = frekuensi (Hz) T = periode (s) n = jumlah getaran t = waktu total (s) B. Gelombang Gelombang adalah usikan yang merambat yang membawa energi dari satu tempat ke tempat lain. Gelombang dapat dibagi menjadi dua jenis utama: 1. Gelombang Mekanik Gelombang mekanik memerlukan medium untuk merambat. Contohnya adalah gelombang air, gelo...

Fungsi ( dekstop mode)

Image
Quiz 1:   Fullscreen Mode Teori Lengkap Fungsi Matematika A. Relasi (Hubungan) Definisi: Aturan yang menghubungkan anggota dua himpunan (A dan B) Contoh Diagram Panah Relasi "Hobi Anak" Contoh Pasangan Berurutan { (Eva, merah), (Roni, hitam), (Tia, merah), (Dani, biru) } Notasi: (Nama, Warna) Domain: {Eva, Roni, Tia, Dani} Kodomain: {merah, hitam, biru} B. Fungsi (Pemetaan) Syarat Fungsi: 1. Setiap domain punya pasangan 2. Setiap domain hanya punya 1 pasangan Komponen Fungsi Domain (D f ): {1,2,3} Kodomain: {1,2,3,4} Range (R f ): {2,3,4} Contoh Fungsi ...

Pythagoras Theorem

Image
Quiz 1   Fullscreen Mode Pythagoras Theorem: Complete Theory and Formulas Fundamental Theorem In any right-angled triangle: a² + b² = c² Where: - a, b = legs (shorter sides) - c = hypotenuse (longest side) Derived Formulas Find hypotenuse (c): c = √(a² + b²) Find leg (a): a = √(c² - b²) Example Problems Example 1: Find hypotenuse (c) when a=6cm, b=8cm 6² + 8² = c² 36 + 64 = 100 → c = √100 = 10cm Example 2: Find leg (a) when b=5cm, c=12cm a² = 12² - 5² a² = 144 - 25 = 119 → a ≈ 10.9cm (3 s.f.) 3D Applications Space diagonal in cuboid: d² = l² + w² + h² Example: For 6×5×4 cuboid: AG = √(6² + 5² + 4²) = √77 ≈ 8.77cm Practice Exercises Calcu...

Moments

Image
Quiz 1:   Fullscreen Mode Theory of Moments Theory of Moments What is a Moment? The moment of a force is the turning effect produced by a force acting at a distance from a pivot or fulcrum. It depends on: The magnitude of the force (\(F\)) The perpendicular distance (\(d\)) from the line of action of the force to the pivot The formula for calculating the moment is: Moment (\(M\)) = Force (\(F\)) × Perpendicular Distance (\(d\)) Unit: Newton meter (Nm) Law of Moments The law of moments states that for a system in equilibrium: Sum of Clockwise Moments = Sum of Anticlockwise Moments This means there is no net turning effect on the body. Conditions for Equilibrium A body is in equilibrium when: The sum of all forces acting on it is zero (no net force). The sum of all moments about any point is zero (no net moment). Examples and Applications Example 1: Balanci...

Direct and Inverse Proportions

Image
Quiz 1   Fullscreen Mode Direct and Inverse Proportions Direct Proportion Two quantities x and y are in direct proportion when they increase or decrease in the same ratio, written as: \[ x \propto y \] \[ \frac{x}{y} = k \] where k is the constant of proportionality Properties of Direct Proportion If x increases, y increases in the same ratio If x decreases, y decreases in the same ratio The ratio x/y remains constant Inverse Proportion Two quantities x and y are in inverse proportion when one increases as the other decreases in the same ratio, written as: \[ x \propto \frac{1}{y} \] \[ xy = k \] where k is the constant of proportionality Applications and Examples Direct Proportion Examples 1. Distance and Time (Uniform Speed): Speed = 75 km/hour Distance in 20 minutes = (75 × 20)/60 = 25 km 2. Cost and Quantity: 5 meters cloth = ₹210 13 meters cloth = (210 × 13)/5 = ₹546 Inverse Proportion Examples 1. Wo...

Algebraic fraction and Formulae

Image
Quiz 1   Fullscreen Mode Quiz 2:   Fullscreen Mode

Quadratic Equation and Graphs

Image
Quadratic Functions and Their Graphs A quadratic function is a polynomial function of degree 2, typically written in the form: $$f(x) = ax^2 + bx + c$$ where a, b, and c are constants and a ≠ 0. Important Properties of Quadratic Function Graphs Y-Intercept: The point where the parabola crosses the y-axis (0, c) X-Intercepts: Also known as zeros, roots, or solutions - points where the parabola crosses the x-axis Vertex: The highest or lowest point of the parabola Axis of Symmetry: A vertical line that passes through the vertex, dividing the parabola into two symmetrical halves Forms of Quadratic Functions 1. Standard Form $$f(x) = ax^2 + bx + c$$ To find the axis of symmetry: $$x = -\frac{b}{2a}$$ 2. Vertex Form $$f(x) = a(x - h)^2 + k$$ Where (h, k) is the vertex of the parabola Characteristics of Parabolas If a > 0, the parabola opens upward (U-shaped) If a The larger the absolute value of a, the narrower the parabola...