Posts

Linear Functions and Graphs

Image
Linear Functions and Graphs: Complete Guide 1. Basic Concepts of Linear Functions A linear function is an equation that forms a straight line when graphed, written in the form: y = mx + b Where: m = slope (rate of change) b = y-intercept (where the line crosses the y-axis) x = independent variable y = dependent variable 1.1 Slope (m) Slope Formula: m = (y₂ - y₁)/(x₂ - x₁) Types of Slopes: Positive Slope: Line goes up from left to right Negative Slope: Line goes down from left to right Zero Slope: Horizontal line (y = constant) Undefined Slope: Vertical line (x = constant) Positive Negative Zero Undefined 2. Intercepts Y-intercept (b): The point where the line crosses the y-axis (x = 0) X-intercept: The point where the line crosses the x-axis (y = 0) To find y-intercept: Substitute x = 0 into the equation To find x-intercept: Substit...

Quadratic Equation and Graphs

Image
Quadratic Functions and Their Graphs A quadratic function is a polynomial function of degree 2, typically written in the form: $$f(x) = ax^2 + bx + c$$ where a, b, and c are constants and a ≠ 0. Important Properties of Quadratic Function Graphs Y-Intercept: The point where the parabola crosses the y-axis (0, c) X-Intercepts: Also known as zeros, roots, or solutions - points where the parabola crosses the x-axis Vertex: The highest or lowest point of the parabola Axis of Symmetry: A vertical line that passes through the vertex, dividing the parabola into two symmetrical halves Forms of Quadratic Functions 1. Standard Form $$f(x) = ax^2 + bx + c$$ To find the axis of symmetry: $$x = -\frac{b}{2a}$$ 2. Vertex Form $$f(x) = a(x - h)^2 + k$$ Where (h, k) is the vertex of the parabola Characteristics of Parabolas If a > 0, the parabola opens upward (U-shaped) If a The larger the absolute value of a, the narrower the parabola...

Listrik Dinamis SMA 1

Image
Listrik Dinamis SMA 1. Konsep Dasar Listrik Dinamis Listrik dinamis adalah listrik yang mengalir dalam suatu rangkaian tertutup. Komponen utama: Arus listrik (I) Beda potensial/tegangan (V) Hambatan (R) Daya listrik (P) 2. Hukum Ohm Rumus Dasar: V = I × R Dimana: V = Tegangan (volt) I = Arus listrik (ampere) R = Hambatan (ohm) 3. Rangkaian Listrik A. Rangkaian Seri: Rtotal = R1 + R2 + R3 + ... I = I1 = I2 = I3 = ... Vtotal = V1 + V2 + V3 + ... B. Rangkaian Paralel: 1/Rtotal = 1/R1 + 1/R2 + 1/R3 + ... Itotal = I1 + I2 + I3 + ... V = V1 = V2 = V3 = ... 4. Daya dan Energi Listrik Rumus Daya: P = V × I P = I² × R P = V²/R ...

Chemistry of the environment

Image
Mind Map Environmental Issues Acidity of Water • pH Levels • Most Acidic Sample (pH 2) • Least Acidic Sample (pH 6) Gas Testing and Collection • Carbon Dioxide Detection • Gas Collection Methods Global Warming • Greenhouse Gases • Causes • Mitigation Strategies Pollution • Air Pollution • Water Pollution • Acid Rain Water Treatment • Filtration • Coagulation • Sedimentation • Chlorination Fertilizers • Types • Nitrogen Calculation • Environmental Impact ...

Trigonometri kelas 10b, koordinat kutub dan persamaan trigonometri

Image
Quiz 1   Fullscreen Mode Teori dan Rumus Trigonometri Koordinat Kutub Teori dan Rumus Trigonometri Koordinat Kutub Koordinat Kutub dan Koordinat Cartesius Letak suatu titik pada bidang xy dapat dinyatakan dalam koordinat Cartesius yaitu (x,y) atau koordinat kutub (r, θ°) . Hubungan antara Koordinat Hubungan antara koordinat Cartesius dan kutub adalah sebagai berikut: y = r * sin(θ°) x = r * cos(θ°) Mengubah dari Koordinat Kutub ke Koordinat Cartesius Rumus untuk mengubah dari koordinat kutub ke kartesius adalah: r² = x² + y² tan(θ°) = y/x Contoh Soal Contoh 1: Tentukan koordinat cartesius dari titik A(10, 330°) x = r * cos(θ°) = 10 * cos(330°) = 10 * (√3/2) = 5√3 y = r * sin(θ°) = 10 * sin(330°) = 10 * (-1/2) = -5 Contoh 2: Tentukan koordinat kutub dari B(-10√3, 10) r = √((-10√3)² + (10)²) = √(300 + 100) = 20 tan(θ°) = y/x = 10 / (-10√3) → θ° = 180 - 30 = 150° Latihan Tentukanlah koordinat ca...